Nasopharyngeal Colonization and Penicillin Resistance Among Pneumococcal Strains: A Worldwide 2004 Update

Déa M. Cardozo¹, Cristiana M. C. Nascimento-Carvalho¹, Fabiane R. Souza² and Nívea M. S. Silva² ¹Department of Pediatrics, Faculty of Medicine, Federal University of Bahia; ²Faculty of Biochemistry, Federal University of Bahia; Salvador, BA, Brazil

Surveillance of nasopharyngeal pneumococcus has proven to be a valuable tool for the monitoring of antibiotic resistance. We reviewed the latest information on colonization rate and penicillin resistance by making a MEDLINE search, using the terms "nasopharyngeal carriage" and "*Streptococcus pneumoniae*". Out of 225 articles found, data from 109 recent publications (89% from 1996-2003) were analyzed. Data were reported from 41 countries of six continents. Individuals under the age of five (64.3%) or 10 years (85.7%) were enrolled, including children attending day-care centers (32.1%) or orphanages (3.6%), and healthy individuals (78.6%) or sick patients (43.6%); biological samples were collected mainly by nasopharyngeal swabs (89.3%). The highest colonization rates were reported from Africa (85-87.2%), where several authors did not find high rates of penicillin resistance. On the other hand, studies conducted in North and Central America reported high-level penicillin resistance at rates of approximately 20-30%. Great variation in the rates of pneumococcal colonization and penicillin resistance were observed within regions or continents. There were also considerable differences in similar populations located in different areas of the same country. Data regarding pneumococcal colonization and penicillin resistance are not available from most countries. We also examined the use of antibiotics to treat pneumococcal infections.

Key Words: Streptococcus pneumoniae, nasopharyngeal carriage, penicillin resistance

Penicillin-resistant *Streptococcus pneumoniae* is an increasing problem worldwide [1]. Nonetheless, surveillance of pneumococcal antibiotic resistance is hampered by the relatively low number of invasive pneumococcal strains that have been isolated [2]. Nasopharyngeal colonization plays an important role in pneumococcal infections [3], and the prevalence of individual clones among isolates from invasive disease has been related to their prevalence in the nasopharynx [4]. In addition, genetic relationships between invasive and nasopharyngeal strains have been found [5].

Pneumococci are part of the normal microbial flora of the nose and pharynx, particularly in young children; they are easily transmitted, usually through droplet secretions, often from an older sibling to a younger sibling and between households within communities [6]. The acquisition of pneumococcus in the nasopharynx occurs early in life, and invasive disease is most likely to occur soon after nasopharyngeal colonization with a newly-acquired strain rather than after long duration of carriage of that strain [7]. Sentinel surveillance of nasopharyngeal pneumococcus has proven to be valuable for the monitoring antibiotic resistance [2] and colonization has been intensively studied in various localities [8].

Received on 2 April 2006; revised 29 June 2006.

Address for correspondence: Dr. Cristiana Nascimento-Carvalho. Rua Prof. Aristides Novis, Nº 105 / apto. 1201B, Salvador, Bahia, Brazil, Zip code: 40210-630. Telephone / Fax: 55.71.32357869. Email: nascimentocarvalho@hotmail.com.

The Brazilian Journal of Infectious Diseases 2006;10(4):293-303. © 2006 by The Brazilian Journal of Infectious Diseases and Contexto Publishing. All rights reserved.

Our aims in this review were to compile the most recent colonization and penicillin resistance rates reported in each region of the world and to examine the use of antibiotics to treat pneumococcal infection in the face of antibiotic resistance, based on the latest evidence of association of antibiotic use with resistance and of effectiveness of penicillin for the treatment of infection caused by penicillin-nonsusceptible pneumococcus (PNSP). PNSP includes strains with resistance to penicillin at an intermediate level (minimal inhibitory concentration [MIC] $0.141\sigma g/mL$) as well as strains with high-level resistance to penicillin (MIC > $2\sigma g/mL$) [2].

Search strategy, selection criteria and management of data

Data for this review were identified by searches of Medline, considering articles published from the 1966 until December 2003. Primary search terms included "nasopharyngeal carriage" and "Streptococcus pneumoniae". All listed articles had their abstracts read, and whenever colonization or penicillin resistance rates were reported, the whole article was read. The data regarding colonization and penicillin resistance were extracted, along with the respective region and time of publication and of performance of the study; the data were analyzed with the statistical software (SPSS version 9.0). The studies conducted within the same region or country were ordered chronologically and the most recent were considered for this analysis. Data regarding the number, age, and the clinical diagnosis of enrolled individuals and biological sample cultures were also collected. Data regarding association of antimicrobial use and pneumococcal resistance to antimicrobials were searched for in the articles selected for

complete reading, including analysis of the references. Articles reporting results about the effectiveness of penicillin use for the treatment of penicillin-nonsusceptible pneumococcal infections were also searched by using the terms "*Streptococcus pneumoniae*" and "resistance" and "treatment" in Medline and in the proceedings of international meetings.

Colonization and penicillin resistance studies

Two-hundred-twenty-five articles were found, out of which 216 (96.0%) were published in English, three (1.3%) in French, two (0.9%) in Italian, and one each (0.45%) in Spanish, Japanese, Swedish and Hebrew; the first of those studies was published in 1977. One-hundred-nine articles reported new data about pneumococcal colonization and resistance to penicillin from 41 countries of six continents; 88.9% of the studies were published as of 1996. The number of studies conducted in each country and the respective frequency were: USA 17 (15.7%), Israel 12 (11.1%), France nine (8.3%), Italy six (5.5%), Finland five (4.6%), India, Brazil four each (3.7%), Australia, Greece, Japan, South Africa, Sweden, and Gambia three each (2.8%), Canada, China, Iceland, Portugal, Taiwan, Turkey, and the United Kingdom two each (1.8%), and Argentina, Bangladesh, Central Africa Republic, Central and Eastern Europe, Chile, Colombia, Costa Rica, Ecuador, Estonia, Ghana, Indonesia, Malawi, Mexico, Romania, Russia, Switzerland, The Netherlands, Uganda, Vietnam and Zambia, one each (0.9%). The most recent data from each region of the world reported in 56 studies are shown in Tables 1-5; 64.3% and 85.7% of these studies recruited individuals under the age of five or 10 years and 32.1% and 3.6% enrolled children attending day care centers or orphanages, respectively. Biological samples were collected from nasopharyngeal swabs alone (89.3%), oropharyngeal swabs alone (1.8%) or nasopharyngeal aspirates alone (1.8%), nasopharyngeal swab or aspirate (1.8%), or naso or oral aspirates (5.3%). 42.8% of the studies enrolled ill patients including pneumonia (7.3%), upper respiratory infection (10.9%), acute otitis media (3.6%), and HIV-infected (1.8%). Healthy individuals were studied in 78.6% of the investigations. The median interval between collection of samples and publication of results was three years (mean 3 + 1.2 years).

Data about pneumococcal carriage and penicillin resistance have not been published for most countries. When data from different countries or regions in the same continent were compared, we found great variation in the pneumococcal carriage and penicillin resistance rates. In South America, the colonization rates varied from 10.0% (southeast region of Brazil, 2001) [9] to 66.0% (Quito, Ecuador, 2002) [10] (Table 1); overall penicillin-resistance rates varied from 1.4% (north region, Brazil, 2001) [9] to 49.0% (Fortaleza, Brazil, 2002) [11] and highlevel penicillin resistance rates varied from 0% (Brazil, 2001) [9,12] to 38.8% (Santa Fé, Argentina, 1997) [13] (Table 1). In

Asia, high-level penicillin resistance was not detected in Blantyre, Malawi, 1997 [17], on Lombok island, Indonesia, 2001 [18] or in Kumamoto, Japan, 2002 [19], whereas it varied from 26% to 40% in Hanoi, Vietnan, 2002 [20], Hong Kong, China, 2001 [21] and Taipei, Taiwan, 2003 [22] (Table 2). The highest colonization rates were reported by studies conducted in Africa [23-26], where several authors have not detected high-level penicillin resistance [1, 27-29] (Table 3). In Europe, most of the most-recent studies reported high-level penicillin resistance at a very low frequency, but this was not the case in North and Central America (Tables 4 and 5). The tables summarize the most recent data regarding resistance to penicillin among pneumococcal carriers worldwide. By observing the results from studies in which individuals living in different but nearby cities were assessed, it is also possible to observe differences: in children 0 to 2 years of age, 42% were colonized with S. pneumoniae in Santiago compared to 14% in Temuco, both of which are Chilean cities [15]; S. pneumoniae was isolated from 129 of 187 (69%) outpatient children in Gaborone and from 53 of 62 (85%) children in Francistown, two cities in South Africa; this difference was significant (P<0.01) [30]. Therefore, large differences can exist in similar populations located in different regions of the same country.

The inequality of availability of data regarding pneumococcal colonization and penicillin resistance worldwide is noteworthy (Tables 1-5). In addition to the data presented here, it is well known that resistance to penicillin is very frequent in Spain and Hungary, based on investigations that studied invasive strains [31,32]. Risk factors for pneumococcal colonization have been recognized: these include young age (< 2 years old), attending a daycare center, having a lower respiratory tract infection [33,34], as well as risk factors for carriage of *S. pneumoniae* resistant to penicillin: young age (< 2 years old), and antibiotic use within the previous month [35]. Most (85.7%) of the studies included in this report enrolled children and several of them were conducted in daycare centers (32.1%) or orphanages (3.6%).

Almost all children carry *S. pneumoniae* at some time, but only 15% of all colonized children become infected; this generally occurs within a month of acquisition [7]. For reasons that are not yet completely understood, the balance between the host and these bacteria can be disrupted, resulting in infection [34]. Pneumococcal infection is age-associated, being relatively common in newborns and infants up to two years of age, and much less so in teenaged children and young adults, again increasing in adults older than 65 years [35]. As in most pneumococcal infection cases, antibiotic treatment is initiated empirically, while culture results are pending or even when antibiotic cultures are not feasible; the sentinel surveillance of nasopharyngeal pneumococcus can be used to decide on the first choice of empirical antibiotic treatment for each pneumococcal illness.

Sa	
ъĕ	
G	
Ξ	
\triangleleft	
ц,	
It	
õ	
5	
Ц	
μ	
92	
ď	
n	
4	
S	
ň	
а	
ŭ	
E	
ta	
is.	
ŝ	
Ľ	
ц	
Ξ	
Ξ.	
·Ĕ	
5	
ď	
5	
ã	
9	
E E	
· Ξ	
at	
<u>1</u>	
Ę	
10	
0	
g	
2	
ŏ	
Š	
ĕ	
=	
ธ	
Ē	
d.	
n	
õ	
÷Ē	
ă	
st	
Ę	
5	
ŭ	
e	
÷	
os	
ŭ	
T	
he	
Ē	
<u>`</u> •	
_	
le	
q	
H	
L .	

	Year of	Period of					Penicillin	resistance	rate	Je northered N		
Study	publication	collection of data	Country	City or Region	Age	Colonization rate	Intermediate level*	High level**	Total	Number of individuals	Clinical diagnosis	Method of collection of specimens
Sequeira et al., [13]	1997	1993-1995	Argentina	Santa Fe	<5yrs	23.4*/14.7‡	9.2	38.8	48.0	450*/68‡	ARI*/healthy‡	Nasopharyngeal swab
Rossi et al., [9]	2001	1999-2000	Brazil	N*, NE; SE¶, S§	<5yrs	18.5*, 16.7‡, 10.0¶, 18.4§	1.4*, 9.8;; 13.8¶, 8.0§	0, 0, 0 0	1.4*, 9.8‡, 13.8¶, 8.0§	373*, 305‡, 1301¶, 542§	DCC	Nasopharyngeal swab
Rey et al., [11]	2002	1998	Brazil	Fortaleza	<5yrs	55.0	45.0	4.0	49.0	482*/429‡	ARI*/healthy‡	Nasopharyngeal swab
Ferreira et al., [12]	2001	1998	Brazil	São Paulo	3mo-5yrs	35.0	16.0	0.0	16.0	400	ARI	Nasopharyngeal swab
Lucarevschi et al., [14]	2003	1998	Brazil	Taubate	8-71mo	21.2	nr	nr	nr	987	DCC	Oropharyngcal swab
Inostroza et al., [15]	1998	1995-1996	Chile	Santiago/ Temuco	<pre><15yrs adults</pre>	26.0*/60.0‡/ 16.0‡	40.0	8.0	48.0	202* / 200‡/107‡	Seeking medical care*/DCC‡	Nasopharyngeal swab
Leal et al., [16]	1997	1993-1994	Colombia	Bogota	<5yrs	42.0	11.0	6.0	17.0	272	Pneumonia	Nasopharyngeal swab
Hamer et al., [10]	2002	nr	Ecuador	Quito	2-60mo	66.0	'n	nr	nr	210	Healthy	Nasopharyngeal swab
ARI = Acute Re DCC = Day Car nr = not reported N = North, NE =	sepiratory Infec e Center 1 = Northeast, S	ction = South, SE =	Southeast	*Interm **High	level MIC	Minimal Inhibit 2 ug/ml	ory Concentrati	ion (MIC) ().12-1 ug/1	lu		

www.bjid.com.br

a
IDI
ő
ŏ
q
an
ia
\mathbf{F}
u /
е.
lat
þd
'n
02
20
а
ö
ŋ
sta
SI.
re
ш.
ii
ic
)er
7
nnc
n 2
10
at
niz
lo
3
al
ö
ŏ
ŏ
1ID
อ
pr
uc
ŝ
lie
ğ
t s1
SD1
ő
t r(
0Si
Ĥ
je
Ì
d
le
ab
Ë

	Year of	Period of		City or		Coloninotion	Penicillin 1	resistance	rate	Jo not mill		And af anthonian of
Study	publication	collection of data	Country	Region	Age	Colonization	Intermediate level*	High level **	Total	individuals	Clinical diagnosis	specimens
Skull et al., [23]	1999	1997	Australia	Darwin	<4yrs	52.0	20.0	5.0	25.0	250	DCC	Nasopharyngeal swab
Saha et al., [24]	2003	1999-2000	Bangladesh	Dhaka	<5yrs	47.0	6.94	0.06	7.0	2839	Healthy	Nasopharyngcal swab
Chiu et al., [21]	2001	1999-2000	China	Hong Kong	2-6yrs	19.4	32.1	26.1	58.2	1978	DCC/ Kindergartens	Nasopharyngcal swab
Coles et al., [25]	2002	1998-1999	India	Natham block	2*-6‡mo	53.9*/70.2‡	'n	nr	3.4	464	Healthy	Nasopharyngcal swab
Soewignjo et al., [18]	2001	1997	Indonesia	Lombok island	<25mo	48.0	0.0	0.0	0.0	484	Healthy	Nasopharyngcal swab
Masuda et al., [19]	2002	1999	Japan	Kumamoto	1mo-5yrs	60.3	60.6	0.0	60.6	156	DCC	Nasopharyngcal swab
Yomo et al., [17]	1997	1995	Malawi	Blantyre	<5yrs	47.5	22.0	0.0	22.0	200	Vaccine clinic	Nasopharyngeal and throat swabs
Lo et al., [22]	2003	1998-1999	Taiwan	Taipei	1mo- 14yrs	19.9	49.5	40.0	89.5	478	NID illnesses or vaccine clinic	Nasopharyngcal swab
Bogaert et al., [20]	2002	1997-1999	Vietnan	Hanoi	<5yrs	ы	13.0	26.0	39.0	'n	URI	Nasopharyngeal swab
DCC = Day C ² NID = Non-Inf URI = Upper R nr = not report	ure Center ectious Disea: espiratory Inf ed	se ection	^년 * *	termediate lev High level MIC	∕el MIC 0.1 C ≥ 2 ug/ml	2 - 1 ug/ml						

ca
fri
A
.Е
ate
pdi
4 U
00
a 2
i.
anc
iste
es
.u
III
nic
pe
pu
na
tio
Za
oni
col
al e
20
SC
Ĩ
Jet
ı pı
01
ies
pnq
t sı
Cen
re(
ost
ш
he
Т.
e
ab]
E

	Year of	Period of				Colonization	Penicillin r	esistance	rate	Numbor of		Mathod of colloction of
Study	publication	collection of data	. Country	City or Region	Age	rate	Intermediate level*	High level**	Total	individuals	Clinical diagnosis	specimens
Rowe et al., [Z]	2000	1995	Central Africa Republic	Bangui	2-59mo	73.3	% .	0.0	8.8	371	≡	Nasopharyngcal swab
Adegbolaet al., [26]	2001	'n	Gambia	Upper River	45- 49mo	87.2	лг	nr	u	102	Healthy	Nasopharyngeal swab
Denno et al., [1]	2002	1996	Ghana	Kumasi	6-12mo	51.4	17.0	0.0	17.0	311	Sick children or vaccine clinic	Nasopharyngcal swab
Robins-Browne et al., B 0]	1984	1981	South Africa	Durban	<12yrs	31.0	п	n	12.0	573	Hospitalized	Nasopharyngeal swab
Huebneret al., [31]	1998	1997	South Africa	Gaborone*/ Francistown‡	<5yrs	69.0*/85.0‡	nr	'n	26.0* / 15.0‡	187*/62‡	Outpatient clinic/ Hospital	Nasopharyngeal swab
Huebneret al., [32]	2000	'n	South Africa	Johannesburg	1mo- 5yrs	40.0	33.0	12.4	45.4	303	Pediatric practices	Nasopharyngeal wab
Joloba ct al., [29]	2001	1995	Uganda	Kampala	_3yrs	62.0	83.5	0.0	83.5	191	Healthy	Nasopharyngeal swab
Woolfson et al., [28]	1997	1994	Zambia	Lusaka	<6yrs	71.9	14.3	0.0	14.3	260	Outpatient clinic	Nasopharyngeal swab
nr = not reported		*	Intermediat	e level MIC 0.12 -	- 1 ug/ml		*	High level	I MIC ≥ 2	ug/ml		

	merica
	7
-	_
	entra
ζ	\mathcal{L}
-	d
	1 an
	ort
1	4
•	e in
	a
-	ğ
	珨
	<u>د</u>
2	T
2	Ξ.
è	1
	a l
	ö.
	ă
	ਬ
	s
•	S
	ö
	Ξ
	=
÷	=
•	5
•	Ē
	5
	р
-	d
	q
	a
	Ξ.
	2
	a,
	N
	Ξ
	0
	0
	C
-	I
	ö
	Š
	2
	õ
	Ξ
	n
	ഉ
	Ξ.
	7
	5
	ŝ
	ö
-	5
	2
	Ś
	H
	G
	õ.
	Ľ
	ŗ.
	SO.
	ă
	1
	ЪС
ŕ	
	4
	e
1	Ö
-	3
- F	

	Year of	Period of				Calculation	Penicillin r	esistance	rate	Mundan		an antipolity of LodderM
Study	publicatio	collection of n data	Country	Cuy or Region	Age	Colonization	Intermediate level*	High level**	Total	individuals	Clinical diagnosis	Mellou ol conecuon ol specimens
Kellner et al., [33]	1999	1995-1996	Canada	Toronto	<12m0	44.3	14.0	3.0	17.0	1322	DCC	Nasopharyngeal swab
Vives et al., [34]	1997	1988-1992	Costa Rica	Puriscal	1mo*- 1yr‡	3.1*/19.4‡	ы	nr	nr	413*/356‡	Every born child	Nasopharyngeal swab
Gomez- Barreto et al., [35]	2002	1997-1999	Mexico	Mexico DF	3-48mo* adults‡	47.0*/35.0‡	38.0	11.0	49.0	53*/20‡	DCC	Nasopharyngcal swab
Doyle et al., [36]	1992	1989	USA	Houston	3-36mo	39.0	0.11	0.0	11.0	140	DCC	Nasopharyngcal swab
Zenni et al., [37]	1995	1992-1993	USA	Nashville	<6yrs	44.0	25.6	10.9	36.5	215	Vaccine clinic	Nasopharyngeal swab
Duchin et al., [38]	1995	1993	USA	Kentucky: Nelson county	2-96mo	52.5	20.0	33.0	53.0	158*/82‡	DCC*/Health center (rural)‡	Nasopharyngcal swab
Arnold et al., [39]	1996	1994	USA	Memphis	<6yrs	47.0	20.0	20.0	40.0	216	URI	Nasopharyngcal swab
Fairchok et al., [40]	1996	1994	USA	Washington D.C.	4mo-5yrs	29.0	26.9	21.1	48.0	179	Healthy	Nasopharyngcal swab
Hennessy et al., [4]	2002	1998-2000	USA	Alaska	All ages	33.0	13.0	22.0	35.0	1103	Population	Nasopharyngcal swab
Chi et al.,[2]	2003	1999-2000	USA	Virginia	adults	41.0*/10.0‡	'n	nr	nr	99*/49‡	Healthy*/URI‡	Nasal, oral swabs and nasal aspiration
Finkelstein et al., [&]	2003	2001	USA	Boston	<7yrs	26.0	14.0	19.0	33.0	742	Sick visit or well care	Nasopharyngeal swab
DCC = Day C	are Center	URI = Upper Re	spiratory Infe	ction nr =	not reported	l *Intermedi	ate level MIC 0.	.12 - 1 ug/	:* lmi	*High level M	$IC \ge 2 \text{ ug/ml}$	

ope
ı Eur
e ir
dat
dn t
700
a 2
lce:
star
resi
lin
icil
pen
nd
on a
catic
zinc
colo
cal
coc
mo
nen
d u
es c
ipn
nt st
ecei
st r(
mo
The
ŝ
ble
La

	Year of	Period of		City or		Colonization	Penicillir	ı resistan	ce rate	Number of		Method of collection of
Study	Publication	collection of data	Country	Region	Age	rate	Intermediat e level*	High level**	Total	individuals	Clinical diagnosis	specimens
Raymond et al., [45]	2000	1996	France	Paris	<24m0	57.4	58.5	36.0	94.5	11	Orphanage	Nasopharyngeal swab
Dunaiset al., [46]	2003	1999-2000	France	Alpes maritimes	6-36mo	34.0*/54.7‡	most	'n	52.5*/ 55.8‡	235*/298‡	Child minder*/ DCC‡	Nasopharyngeal aspirate
Syrogiannopoubs et al., [44]	2002	1997-1999	Greece	Central Southern	2-23mo	31.0	9.6	6.4	16.0	2448	unselected	Nasopharyngeal swab
Regev-Yochay et al., [47]	2003	2001	Israel	Israel	<6yrs	52.7	37.1	0.0	37.1	429	Primary care unit	Nasopharyngeal swab
Petrosillo et al., [48]	2002	1999	Italy	Rome	2-65mo	14.9	17.6	1.2	18.8	610	DCC	Nasopharyngeal swab
Marchisio et al., [49]	2003	1998-2000	Italy	Milan	6mo-7yrs	45.0*/70.0‡ 31.0¶	24.0*/18.0‡ 8.0¶	₩ ‡*0	24.0*/18.0‡ 8.0¶	85*/113‡ 55¶	rAOM*/cOME‡ controls¶	Nasopharyngeal swab
Mosca et al., [50]	2003	2000	Italy	Bari	1-7yrs	18.3	8.6	0	8.6	317	Healthy	Nasopharyngeal swab
Neto ct al., [51]	2003	1997-2000	Portugal	Lisbon	⊴12yrs	22.8	21.8	1.5	23.3	466	Pediatric Emergency	Nasopharyngcal swab
Mühlemannet al., [2]	2003	1998-1999	Switzerland	Whole country	< 17yrs	42.6	10.5	2.5	13.0	2769	AOM or pneumonia	Nasopharyngeal swab
Ciftçiet al., [1]	2000	1997	Turkey	Ankara	2mo-2yrs	30.0*/43.3‡	32.7	2.7	35.4	150*/150‡	Controls*/Ills‡	Nasopharyngeal swab
DCC = Day Care C RAOM = recurrent cOME = chronic O	Center Acute Otitis M titis Media with	ledia h Effusion	** =	Intermediate *High level M r = not report	level MIC 0. 1IC ≥ 2 ug/n ≿d	.12 - 1 ug/ml al						

led
ntinı
ů
vi
le
ab
Ĥ

		Period of					Penicillin	n resistan	ce rate			
Study	Year of Publication	collection of data	Country	City or Region	Age	Colonization rate	Intermediate level*	High level **	Total	Number of individuals	Clinical diagnosis	Method of collection of specimens
Appelbaum et al., [2]	1996	1993-1994	Central and Eastern Europe	Central and Eastern Europe	<5yrs	27.0	Nr	most	40.3	954	Hospitalized/ Outpatients/ DCC	Nasopharyngeal swab: pernasally or via mouth
Naaber et al., [53]	2000	1999-2000	Estonia	Tartu, Tallin, Johvi	2-7yrs	46.0	8.8	0	8.8	396	DCC	Nasopharyngcal swab
Syrjanenet al., [54]	2001	1994-1995	Finland	Hervanta arca, Tampere	2-24mo	9.0*/43.0‡	0.9*/3.6‡	0.3*‡	1.2*/3.9‡	329	Healthy*/ARI‡	Nasopharyngeal swab/ aspirates
Arason et al., [55]	2002	1998	Iceland	4 cities	1-6yrs	51.7	7.8	0.3	8.1	743	Community DCC	Nasopharyngeal swab
Leibovitz et al., [56]	6661	1996	Romania	lasi	1-106mo	50.0*/30.0‡	25.0	74.0	0.66	162*/40‡	Orphanage: HIV-*/HIV+‡	Nasopharyngeal swab
Stratchounski et al., [57]	2000	nr	Russia	3 cities	<7yrs	55.9	7.5	0	7.5	733	DCC	Nasopharyngeal swab
Christenson et al., [3]	1997	1995	Sweden	Stockholm	Children * adults‡	36.8*/3.0‡	0.8	0.0	0.8 */0‡	1129*/308‡	DCC	Nasopharyngeal swab
Borres et al., [59]	2000	1996-1997	Sweden	Goteborg	18mo	51.9	5.6	0.0	5.6	620	Healthy	Nasopharyngeal swab
Peerbooms et al., [60]	2002	1999	The Netherlands	Amsterdan	3-36mo	58.0*/37.0‡	Nr	H	0.24	259*/276‡	DCC*/control‡	Nasal, oral swabs and nasal aspiration
Lakshman et al., [6l]	2003	2000-2001	UK	Bristol	2-5yrs	(24.7*-27.0‡)¶/ (43.4*-41.0‡)§	Nr	'n	'n	(150*- 126‡)¶ (143*-188‡)§	vaccinated [±] nonvacinated‡ summer¶ winter§	Nasopharyngeal swab
DCC = Day Care	Center ARI	= Acute Respir	atory Infection	nr = not report	, pe	*Intermediate leve	el MIC 0.12 - 1	lm/gu	**High le	wel MIC ≥ 2 ug	/ml	

www.bjid.com.br

Figure 1. The most recent data regarding frequency of overall and high-level resistance to penicillin* among nasopharyngeal pneumococcal isolates

Rates(%) are presented as: (overall / high-level penicillin resistance); nr: not reported *high level resistance to penicillin=MIC > 2ug/ml

Antimicrobial use and antimicrobial resistance

Various studies have demonstrated that the frequency of antibiotic use in a community is associated with the frequency of penicillin resistance among pneumococcal strains; the penicillins were the antibiotics that were least associated with this event [36,37-39]. In Iceland, Arason and colleagues [36] studied the prevalence of nasopharyngeal carriage of penicillinresistant pneumococci in children aged under seven years in relation to antimicrobial use (penicillins, cephalosporins, erythromycin and trimethoprim/sulfamethoxazol) in five different communities and found that antimicrobial use, taking into account both individual use and total antimicrobial consumption in the community, was strongly associated with nasopharyngeal carriage of penicillin-resistant pneumococci in children. Hyde and colleagues [37] studied the epidemiology of invasive pneumococcal strains isolated in the USA between 1995 and 1999; they also collected data about the use of macrolides between 1993 and 1999 in the USA; the increase in the rate of resistance to macrolides was correlated with the frequency of macrolide use, those data differed in children aged < versus > 5 years. Kastner and colleagues [38] studied, once a week, during six weeks, the resistance of pneumococcal nasopharyngeal strains in children before and after receiving different macrolides, in an open, prospective and randomized investigation; they found that in the first week after treatment 90% of the patients were colonized by resistant strains and the resistance rates returned to baseline numbers by the sixth week for the subgroups that received erythromycin, clarithromycin, roxithromycin and josamycin, but this was not the case for the group that received azythromycin (P<0.005). Garcia-Rey and colleagues [39] studied 1,684 pneumococcal strains isolated from patients with community-acquired respiratory infection; they collected data about the frequency of use of different antimicrobials from distinct communities in Spain and found a correlation between antimicrobial use and pneumococcal resistance. When different antimicrobials were examined separately by multivariate analysis, aminopenicillins, cephalosporins and macrolides were found to be correlated with resistance at increasing rates, respectively.

Antimicrobial resistance and treatment with antimicrobials

Several investigators have given evidence that high doses of amoxicillin [40] or penicillin G [41] are effective for the treatment of respiratory infections caused by high-level penicillin resistant pneumococcal strains [40,41]. Piglansky and colleagues [40] evaluated by tympanocentesis, at enrollment and on days four to six of therapy, 50 culturepositive patients aged 3-22 months with acute otitis media (AOM); the patients received amoxicillin (80 mg/kg/day) and susceptibility to penicillin was assessed by the E-test. Twentyfour isolates of *S pneumoniae* were recovered, out of which 18 were nonsusceptible to penicillin (two of 18 were highly resistant to penicillin). Eradication was achieved in 92% of the patients with pneumococcal AOM. The authors concluded that the overall clinical efficacy of amoxicillin was good. Moreover, the predominant pathogens isolated from children with AOM failing high dose amoxicillin therapy were betalactamase-producing organisms; specifically Haemophilus influenzae. In a study conducted by Agosti and colleagues [71], 269 children aged 3-59 months were hospitalized due to severe pneumonia caused by S. pneumoniae recovered from blood or pleural fluid; each of those patients received intravenous penicillin (200,000 IU/kg/day). The pneumococcal isolates were classified as susceptible (131), intermediate resistant (66), highly resistant (53) or unknown (19) to penicillin; there was no association between pneumonia caused by nonsusceptible pneumococcus and failure of penicillin treatment. Various experts have recommended the use of penicillin to empirically-treat pneumococcal infections that do not compromise the central nervous system [42-45]. In the case of pneumococcal meningitis, it is clear that penicillin treatment is contraindicated for isolates with intermediate or high-level resistance [45]. A number of clinical studies of pneumococcal pneumonia have assessed the treatment outcomes following infection by drug resistant pneumococcus, compared with the course of infection by drug-susceptible pneumococcus isolates in the same population [45]. Echoing the results of previous studies, older age and underlying disease, but not drug resistance in the isolate, were found to be the most important predictors of mortality from pneumococcal pneumonia [45].

In a recent cross-sectional study conducted in St. Louis, USA, *S. pneumoniae* was isolated from the nasopharynx of 85 (40%) of 212 patients younger than seven years who had AOM, nonspecific upper respiratory infection, cough, acute sinusitis, or pharyngitis; 41 (48%) of 85 isolates were PNSP and 6 (7%) were nonsusceptible to amoxicillin (NSSP-A), and among the 212 study patients the prevalence of PNSP was 19% and of NSSP-A was 3%. Carriage of NSSP was increased in child-care attendees compared with nonattendees; based on these data the authors recommended to treat most children who have uncomplicated AOM with standard-dose amoxicillin, while children who attend child care centers or who have recently been treated with antibiotics may require treatment with high–doses of amoxicillin [46].

Global containment of antimicrobial resistance is a matter of concern for authorities, as spread of resistance may be influenced by interpersonal contact promoted by travelers crossing national boundaries [47]. Based on the foregoing evidence, we propose that pneumococcal infection that does not compromise the central nervous system be treated empirically by using penicillin, worldwide [42,46,48]. This routine may reduce the frequency of pneumococcal penicillin resistance and therefore minimize the problem of treating severe pneumococcal infection caused by resistant strains, especially when the central nervous system is compromised. **Conclusion**

Pneumococcal penicillin resistance varies considerably from one region to another around the world. The penicillins have been the antibiotics least associated with pneumococcal antibiotic resistance [36,37-39]; there is no evidence of failure of penicillin treatment at high doses in resistant pneumococcal infections that do not compromise the central nervous system [41,46,48]. Therefore, it is possible that the routine use of penicillin to treat pneumococcal infections that does not compromise the central nervous system will diminish the frequency of pneumococcal penicillin resistance.

References

- Denno D.M., Frimpong E., Gregory M., Steele R.W. Nasopharyngeal carriage and susceptibility patterns of *Streptococcus pneumoniae* in Kumasi, Ghana. West Afr J Med 2002;21:233-6.
- Muhlerman K., Matter H.C., Tauber M.G., Bodmer T. Nationwide surveillance of nasopharyngeal *Streptococcus pneumoniae* isolates from children with respiratory infection, Switzerland, 1998-1999. J Infect Dis 2003;187:589-96.
- Ciftçi E., Dogru U., Aysev D., et al. Nasopharyngeal colonization with penicillin-resistant *Streptococcus pneumoniae* in Turkish children. Pediatr Int **2000**;42:552-6.
- 4. Brueggemann A.B., Griffths D.T., Meats E., et al. Clonal relationship between invasive and carriage *Streptococcus pneumoniae* and serotype- and clone-specific differences in invasive disease potential. J Infect Dis **2003**;187:1424-32.
- de Andrade A.L., Pimenta F.C., Brandileone M.C., et al. Genetic relationship between *Streptococcus pneumoniae* isolates from nasopharyngeal and cerebrospinal fluid of two infants with pneumococcal meningitis. J Clin Microbiol **2003**;41:3970-2.
- O'Brien K.L., Nohynek H., and the WHO Pneumococcal Vaccine Trials Carriage Working Group. Report from a WHO Working Group: standard method for detecting upper respiratory carriage of *Streptococcus pneumoniae*. Pediatr Infect Dis J 2003;22:133-40.
- Gray B.M., Converse G.M., Dillon H.C. Epidemiologic studies of *Streptococcus pneumoniae* in infants: acquisition, carriage and infection during the first 24 months of life. J Infect Dis 1980;142:923-33.
- Garcia-Rodriguez J.A., Fresnadillo Martínez M.J. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J Antimicrob Chemother 2002;50 Suppl S2:59-73.
- Rossi F., Andreazzi D., Maffucci M., Pereira AA. Susceptibility of *S. pneumoniae* to various antibiotics among strains isolated from patients and healthy carriers in different Regions of Brazil (1999-2000). Braz J Infect Dis **2001**;5:305-12.
- Hamer D.H., Egas J., Estrella B., et al. Assessment of the Binas NOW *Streptococcus pneumoniae* urinary antigen test in children with nasopharyngeal pneumococcal carriage. Clin Infect Dis **2002**;34:1025-8.
- Rey L.C., Wolf B., Moreira L.B., et al. Antimicrobial susceptibility and serotypes of nasopharyngeal *Streptococcus pneumoniae* in children with pneumonia in children attending day-care centers in Frotaleza, Brazil. Int J Antimicrob Agents 2002;20:86-92.
- Ferreira L.L.M., Carvalho E.S., Berezin E.N., Brandileone M.C. Nasopharyngeal colonization and antimicrobial resistance of *Streptococcus pneumoniae* isolated from children with acute rhinopharyngitis. J Pediatr (Rio J.) 2001;77:227-34.
- Sequeira M.D., Zerbini E., Imaz M.S., et al. Etiology of acute lower respiratory infections among children younger than 5 years old in Santa Fe. Medicina (B Aires) 1997;57:191-9.

- Lucarevschi B.R., Baldacci E.R., Bricks L.F., et al. Oropharyngeal carriage of *Streptococcus pneumoniae* by children attending day care centers in Taubaté, SP: correlation between serotypes and conjugated heptavalent pneumococcal vaccine. J Pediatr (Rio J.) 2003;79:215-20.
- Inostroza J., Trucco O., Prado V., et al. Capsular serotype and antibiotic resistance of *Streptococcus pneumoniae* isolates in two Chilean cities. Clin Diagn Lab Immunol **1998**;5:176-80.
- Leal A.L., Castañeda E. Susceptibilidad antimicrobiana de Streptococcus pneumoniae colonizante de nasofaringe en niños colombianos com neumonía. Rev Panam Salud Publica 1997;1: 266-72.
- Yomo A., Subramanyam V.R., Fudzulani R., et al. Carriage of penicillin-resistant pneumococci in Malawian children. Ann Trop Pediatr 1997;7:239-43.
- Soewignjo S., Gessner B.D., Sutanto A., et al. *Streptococcus pneumoniae* nasopharyngeal carriage prevalence, serotype distribution, and resistance patterns among children on Lombok island, Indonesia. Clin Infect Dis 2001;32:1039-43.
- Masuda K., Masuda R., Nnishi J., et al. Incidences of nasopharyngeal colonization of respiratory bacterial pathogens in Japanese children attending day-care centers. Pediatr Int 2002;44:376-80.
- Bogaert D., Ha N.T., Sluijter M., et al. Molecular epidemiology of pneumococcal carriage among children with upper respiratory tract infections in Hanoi, Vietnam. J Clin Microbiol 2002;40:3903-8.
- Chiu S.S., Ho P.L., Chow F.K.H., et al. Nasopharyngeal carriage of antimicrobial-resistant *Streptococcus pneumoniae* among young children attending 79 kindergartens and day care centers in Hong Kong. Antimicrob Agents Chemother **2001**;45:2765-70.
- Lo W.T., Wang C.C., Yu C.M., Chu M.L. Rate of nasopharyngeal carriage, antimicrobial resistance and serotype of *Streptococcus pneumoniae* among children in northern Taiwan. J Microbiol Immunol Infect **2003**;36:175-81.
- Adegbola R.A., Obaro S.K., Biney E., Greenwood B.M. Evaluation of Binax now *Streptococcus pneumoniae* urinary antigen test in children in a community with a high carriage rate of pneumococcus. Pediatr Infect Dis J 2001;20:718-9.
- Rowe A.K., Deming M.S., Schwartz B., et al. Antimicrobial resistance of nasopharyngeal isolates of *Streptococcus pneumoniae* and *Haemophilus influenzae* from children in the Central African Republic. Pediatr Infect Dis J 2000;19:438-44.
- Woolfson A., Huebner R., Wasas A., et al. Nasopharyngeal carriage of community-acquired, antibiotic-resistant *Streptococcus pneumoniae* in a Zambian paediatric population. Bull World Health Organ **1997**;75:453-62.
- Joloba M.L., Bajaksouzian S., Palavecino E., et al. High prevalence of carriage of antibiotic-resistant *Streptococcus pneumoniae* in children in Kampala Uganda. Int J Antimicrob Agents 2001;17:395-400.
- 30. Huebner R.E., Wasas A., Mushi A., et al. Nasopharyngeal carriage and antimicrobial resistance in isolates of *Streptococcus pneumoniae* and *Haemophilus influenzae* type b in children under 5 years of age in Botswana. Int J Infect Dis **1998**; 3: 18-25.
- Fenoll A., Bourgon C., Munoz R., et al. Serotype distribution and antimicrobial resistance of *Streptococcus pneumoniae* isolates causing systemic infections in Spain, 1979-1989. Rev Infect Dis **1991**; 13: 56-60.

- Marton A., Gulayas M., Munoz R., Tomasz A. Extremely high incidence of antibiotic resistance in clinical isolates of *Streptococcus pneumoniae* in Hungary. J Infect Dis 1991; 163: 542-8.
- 33. Neto A.S., Lavado P., Flores P., et al. Risk factors for the nasopharyngeal carriage of respiratory pathogens by portuguese children: phenotype and antimicrobial susceptibility of *Haemophilus influenzae* and *Streptococcus pneumoniae*. Microb Drug Resist 2003; 9: 99-108.
- Ghaffar F., Friedland I.R., McCracken G.H. Dynamics of nasopharyngeal colonization by *Streptococcus pneumoniae*. Pediatr Infect Dis J **1999**; 18: 638-46.
- Arason V.A., Kristinsson K.G., Sigurdson J.A., et al. Do antimicrobials increase the carriage of penicillin resistant pneumococci in children? Cross sectional prevalence study. BMJ 1996; 313: 387-91.
- Burman L.A., Norrby R., Trollfors B. Invasive pneumococcal infections: incidence, predisposing factors, and prognosis. Rev Infect Dis 1985; 7: 133-42.
- Hyde T.B., Gay K., Stephens D.S. Macrolide resistance among invasive *Streptococcus pneumoniae* isolates. JAMA 2001; 286:1857-62.
- Kastner U., Guggeenbichler J.P. Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection 2001; 29: 251-6.
- Garcia-Rey C., Aguilar L., Baquero F., et al. Importance of local variations in antibiotic consumption and geographical differences of erythromycin and penicillin resistance in *Streptococcus pneumoniae*. J Clin Microbiol **2002**; 40: 159-64.
- Piglansky L., Leibovitz E., Raiz S., et al. Bacteriologic and clinical efficacy of high dose amoxicillin for therapy of acute otitis media in children. Pediatr Infect Dis J 2003; 22: 405-13.
- 41. Agosti M.R., Benguigui Y., Berezin E.W., et al. Penicillin is effective for treatment of pneumonia due to penicillin nonsusceptible *Streptococcus pneumoniae*. [Abstract AM040] In: Abstracts of the 2nd International Conference on Improving Use of Medicines (Chiang Mai) Chiang Mai: Thailand, March 30 to April 2, 2004.
- Friedland I.R., McCracken G.H., Jr. Management of infections caused by antibiotic-resistant *Streptococcus pneumoniae*. N Engl J Med **1994**; 331: 377-82.
- Klugman K.P., Friedland I.R. Antibiotic-resistant pneumococci in pediatric disease. Microb Drug Resist 1995; 1: 5-8
- Klugman K.P. Bacteriological evidence of antibiotic failure in pneumococcal lower respiratory tract infections. Eur Respir J Suppl 2002; 36: 3S-6S.
- Bishai W. The *in vivo-in vitro* paradox in pneumococcal respiratory tract infections. J Antimicrob Chemother 2002; 49: 433-6.
- 46. Garbutt J, St Geme JW 3rd, May A, Storch GA, Shackelford PG. Developing community-specific recommendations for first-line treatment of acute otitis media: is high-dose amoxicillin necessary? Pediatrics **2004**; 114: 342-7.
- WHO. WHO Global Strategy for Containment of Antimicrobial Resistance. WHO/CDS/CSR/DRS/2001.2. Geneva: World Health Organization, 2001.
- Heffelfinger JD, Dowell SF, Jorgensen JH et al. Management of community-acquired pneumonia in the era of pneumococcal resistance. Arch Intern Med 2000; 160: 1399-408.